V Semester B.A./B.Sc. Examination, March/April 2022
 (CBCS 2016-17 and Onwards) (F+R)
 MATHEMATICS
 Mathematics (Paper - VI)

Time: 3 Hours
Max. Marks : 70

Instruction: Answer all questions.
PART - A

Answer any five questions.

1. a) Show that the shortest distance between two points in a plane is a straight line.
b) Find the differential equation of the functional $\mathrm{I}=\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left[\mathrm{y}^{2}-\left(\mathrm{y}^{\prime}\right)^{2}-2 \mathrm{y} \sin \mathrm{x}\right] \mathrm{dx}$.
c) Write Euler's equation when the function f is independent of x and y.
d) Evaluate $\int_{C}[x d y-y d x]$, where C is the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$.
e) Evaluate $\iint_{0}^{a b}\left(x^{2}+y^{2}\right) d x d y$
f) Evaluate $\iint_{0}^{1} \int_{0}^{2} x y z^{2} d x d y d z$.
g) State Stoke's theorem.
h) Show that the area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is π ab using Green's theorem.
P.T.O.

|||||||||||||||||||||||||||||

PART - B

Answer two full questions.
($2 \times 10=20$)
2. a) Derive the Euler's equation in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
b) Find the geodesic on a surface of right circular cylinder.

OR

3. a) Find the extremal of the functional $I=\int_{x_{1}}^{x_{2}}\left[12 x y+\left(y^{\prime}\right)^{2}\right] d x$.
b) Solve the variational problem $\int_{1}^{2}\left[x^{2}\left(y^{\prime}\right)^{2}+2 y(x+y)\right] d x=0$ with the conditions

$$
y(1)=0 \text { and } y(2)=0 \text {. }
$$

4. a) Find the extremal of the functional $I=\int_{0}^{\pi}\left[\left(y^{\prime}\right)^{2}-y^{2}\right] d x$ with $y(0)=0$ and $y(\pi)=1$ and subject to the constraint $J=\int_{0}^{\pi} y d x=1$.
b) Show that the general solution of Euler's equation for the integral

$$
\begin{gathered}
I=\int_{x_{1}}^{x_{2}}\left(\frac{y^{\prime}}{y}\right)^{2} d x \text { is } y=a e^{b x} . \\
O R
\end{gathered}
$$

5. a) Find the equation of the plane curve on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity.
b) Find the extremal of the functional $I=\int_{x_{1}}^{x_{2}}\left[y^{2}+\left(y^{\prime}\right)^{2}+2 y e^{x}\right] d x$.
PART - C

Answer two full questions.
$(2 \times 10=20)$
6. a) Evaluate $\int_{C}(x+y+z) d s$, where ' C ' is the line joining the points $(1,2,3)$ and $(4,5,6)$ whose equations are $x=3 t+1, y=3 t+2, z=3 t+3$.
b) Evaluate $\int_{C}[(x+2 y) d x+(4-2 x) d y]$ along the curve $C: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ in anticlockwise direction.

OR

7. a) Evaluate $\iint_{A}\left(4 x^{2}-y^{2}\right) d x d y$, where ' A ' is the area bounded by the lines $y=0, y=x$ and $x=1$.
b) Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by using double integration.
8. a) Evaluate $\int_{-a}^{a} \int_{-b}^{b} \int_{-c}^{c}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$.
b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.

OR
9. a) Evaluate $\iiint_{R} x y z d x d y d z$ over the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ by transforming into cylindrical polar coordinates.
b) Find the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ using triple integration.
PART - D

Answer two full questions.
10. a) State and prove Green's theorem.
b) Evaluate using divergence theorem $\iint_{S} \vec{F} \cdot \hat{n} d S$, where $\vec{F}=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}$ and S be the surface of the cube bounded by $x=0, x=1, y=0, y=1$, $z=0, z=1$.

OR
11. a) Verify Green's theorem in the plane for $\oint_{C}\left[x y+y^{2}\right] d x+x^{2} d y$, where C is the closed curve bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$.
b) Evaluate $\iint \vec{F} \cdot \hat{n} d S$ using divergence theorem where $\vec{F}=x \hat{i}-y \hat{j}+\left(z^{2}-1\right) \hat{k}$ and S is the closed surface bounded by planes $z=0, z=1$ and the cylinder $x^{2}+y^{2}=4$.
12. a) Evaluate by Stoke's theorem $\oint_{C}[y z d x+z x d y+x y d z]$, where C is the curve $x^{2}+y^{2}=1, z=y^{2}$.
b) Evaluate by usingdivergencetheoremfor $\iint_{S} \vec{F} \cdot \hat{n} d S$, where $\vec{F}=2 x y \hat{i}+y z^{2} \hat{\mathbf{j}}+x z \hat{k}$ over the rectangular parallelepiped $0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq 3$.
OR
13. a) Evaluate by Stoke's theorem $\oint_{C}[\sin z d x-\cos x d y+\sin y d z]$, where C is the boundary of rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1, z=3$.
b) Evaluate using Green's theorem in the plane for
$\int_{C}\left[3 x^{2}-8 y^{2}\right] d x+[4 y-6 x y] d y$, where C is boundary of the region enclosed by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.

